Crystals of pain: navigating gout and its management

SD Vambe, CV Mchavi, E Hough, E Bronkhorst

School of Pharmacy, Sefako Makgatho Health Sciences University, South Africa

Corresponding author, email: elmien.bronkhorst@smu.ac.za

Abstract

Gout is a form of inflammatory arthritis, caused by the buildup of uric acid crystals in the joints, especially the big toe. If left untreated these tophi, or crystals can become extremely painful, and over time may result in damage to bone and soft tissue. It is important to get a correct diagnosis on gout and to differentiate with other diseases like septic arthritis, rheumatoid arthritis and even stress fractures. Non-pharmacological treatment and prevention strategies include sufficient rest and adequate dietary and lifestyle modifications. The management of gout distinguishes between treatment for acute gout symptoms and the prevention of a gout attack or the lowering of uric acid in the serum. Urate-lowering therapy, like allopurinol and febuxostat, lowers blood urate levels, can prevent gout flare-ups and diminishes tophi over time. Treatment with one or more potent anti-inflammatory medication is necessary for the management of acute flares. Four categories of medicine are available for treatment of acute symptoms of pain and inflammation. They include nonsteroidal antiinflammatory medicine, corticosteroids, colchicine, and anti-IL-1β biologics. Efficacy between these agents is similar, thus focus should be on minimising individual risks. People with a tendency to develop gout must limit their consumption of red meat, fish, shellfish and alcohol, particularly those that have additional purines such as beer, wine and whiskey.

Keywords: gout, urate-lowering therapy, allopurinol, colchicine

Republished from: S Afr Pharm J 2024;91(4):26-33. https://doi.org/10.36303/SAPJ.0810

Introduction

Gout is a common form of inflammatory arthritis that occurs due to a buildup of uric acid in the body over time.^{1,2} Since the body cannot easily dissolve and excrete high uric acid levels via urine, the uric acid starts to crystallise and form sharp crystals known as tophi in the joints, usually in the joint of the big toe.^{3,4} The tophi initially cause no pain; however, they can become painful over time and may result in damage to the bone and soft tissue, leading to misshapen joints.² Although the big toe is more commonly affected, other joints affected by gout are the knees, ankles, feet, hands, wrists, and elbows.^{1,5} The presence of high levels of uric acid in these joints causes severe pain and inflammation.²

Gout can affect anyone, but it is more prevalent in men, and women usually develop it after menopause. 4 The condition typically begins in middle age, but if it starts at a younger age, the symptoms are usually more severe.2 Gout is a progressive disease that can go through several stages.3

In the first stage, known as hyperuricaemia, elevated urate levels in the blood lead to the formation of crystals in the joints, as shown in Figure 1.3 Typically, there are no symptoms during this stage.² The second stage is characterised by gout flares, which involve periodic attacks of intense joint pain and swelling.3 Intercritical gout, the third stage, is the period between gout attacks when there are no symptoms.2 The final stage, chronic gout, involves the accumulation of tophi in the joints, skin, or other parts of the body. Depending on their location, tophi can cause permanent damage to the joints and other internal organs, increasing the risk of developing other conditions or complications, especially related to the heart and kidneys.^{2,3} Comorbidities that may increase the prevalence of gout include:3

- Hypertension (high blood pressure)
- Chronic kidney disease
- Obesity
- · Diabetes
- Nephrolithiasis (kidney stones)
- Myocardial Infarction (heart attack)
- Congestive heart failure
- · Sleep apnoea
- Depression

The Stages of **Gout Progression** STAGE 1: **High Uric Acid Levels** Uric acid is building up in the blood and starting to form crystals around joints STAGE 2:

Acute Gout

Symptoms start to occur, causing a painful gout attack

STAGE 3: **Intercritical Gout** Periods of remission between gout attacks

Chronic Gout Gout pain is frequent and tophi form in joints

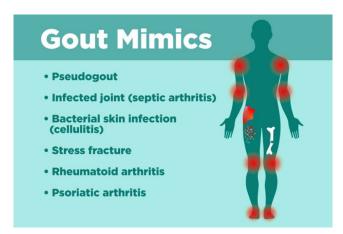


Figure 2: Diseases that mimic gout⁶

The diagnosis of gout is not always straightforward, and a differential diagnosis may be necessary. Other diseases can present similarly to gout and cause a misdiagnosis as shown in Figure 2.6

Pseudogout

Pseudogout, formerly known as calcium pyrophosphate deposition disease or CPPD, is now commonly referred to as pseudogout due to its similarity to gout. Both gout and pseudogout cause sudden joint pain, swelling, and redness, which makes them difficult to differentiate. It is the type of crystals formed in the two conditions that differ. For gout, it is uric acid, while in pseudogout, it is crystallised calcium pyrophosphate (CPP).

Infected joint (septic arthritis)

Both gout and an infected joint can cause fever and an increase in white blood cells.⁴ However, the presence of an offending microorganism in the fluid taken from the affected joint indicates septic arthritis, as it is an infection, unlike gout.⁶ Treatment of septic arthritis is directed at eliminating the offending bacteria.

Bacterial skin infection (cellulitis)

Both gout and cellulitis can cause inflammation and pain in the lower leg.⁷ The difference is that in gout there is an accumulation of uric acid crystals in a joint, while cellulitis is a bacterial infection in the deep layer of the skin.⁶ A blood culture can be used to differentiate the two conditions.

Stress fracture

Gout is often mistaken for injuries to the toes caused by dropping heavy items on the toes or jamming the big toe against a hard surface. Stress fractures can occur without the individual being aware and are frequently confused with gout.⁶ An X-ray can assist with identifying the cause of the pain if a stress fracture is suspected.

Rheumatoid arthritis

In individuals with polyarticular gout, which affects several joints, gout is often mistaken for rheumatoid arthritis.⁶ The key

distinction is that gout typically starts by affecting one or a few joints, while rheumatoid arthritis tends to involve multiple, larger joints symmetrically and can affect many organs in the body.⁴ Blood tests, such as anti-CCP, C-reactive protein, erythrocyte sedimentation rate, and rheumatoid factor, can help doctors distinguish between gout and rheumatoid arthritis.⁶

Psoriatic arthritis

As with rheumatoid arthritis, psoriatic arthritis (PsA) can cause swelling around the fingers or toes, which may resemble gout tophi.⁶ However, with PsA there is no buildup of uric acid crystals in the joints.^{4,6}

Pathophysiology and clinical presentations

Table I: Pathophysiology of gout			
Aspect	Details		
Pathophysiology	Gout is characterised by elevated serum uric acid levels (hyperuricaemia), typically exceeding 6.8 mg/dL.9		
Uric acid crystal formation	As blood uric acid levels increase, urate crystals form.		
Clinical presentation	Kidney Stones: Formation of uric acid crystals can lead to kidney stones		
	Tophi: Deposits of urate crystals in joints and tissues can form tophi (chalky nodules).		
	Gouty Arthritis: Urate crystal deposition in joints can cause episodes of gouty arthritis, characterised by sudden and severe joint pain. ¹⁰		

Hyperuricaemia

Hyperuricaemia is characterised by elevated levels of uric acid in the bloodstream, typically exceeding 6 mg/dL in women and 7 mg/dL in men.¹¹ Uric acid is produced during the breakdown of purines in the body as shown in Figure 3.^{12,13} Research has additionally demonstrated a correlation between elevated uric acid levels and various other health conditions, such as kidney disease, heart disease, hypertension, diabetes, non-alcoholic fatty liver disease, and metabolic syndrome.^{14,15,16} Hyperuricaemia causes cardiovascular disease and chronic kidney disease by prompting abnormal growth of vascular smooth muscle cells and impaired endothelial function, which triggers inflammation.¹⁷

Inflammatory response

Hyperuricaemia gradually progresses and promotes the formation of monosodium urate (MSU) crystals, triggered by various factors such as dehydration, alcohol, hypertension, thereby causing inflammation in the joints. 18,19 Inflammatory cytokines, particularly IL-1 β , are the key mediators of gouty inflammation. 20 The NLRP3 inflammasome is the major pathway by which MSU crystals trigger the cellular inflammatory response as shown in Figure 4. 21 Delivery of ingested MSU crystals to the inflammasome in phagocytes subsequently triggers intracellular assembly of the cytosolic NALP3 (cryopyrin) inflammasome protein complex. 21

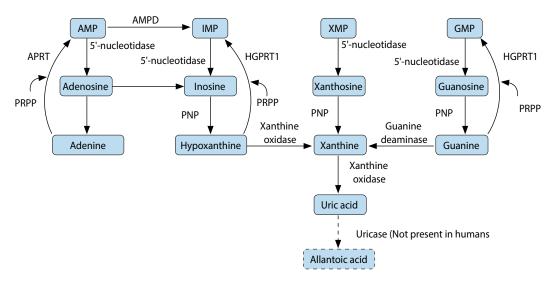


Figure 3: Uric acid synthesis and purine metabolism in gout¹³

The MSU crystals cause the inflammasome assembly, which in turn causes caspase-1 activation, phagocyte maturation, and the production of IL-1 β .²⁰

Acute gout attacks

Acute gout attacks start suddenly and escalate quickly, with joint pain usually reaching its peak within 24 hours of onset. These attacks often begin to improve within 5–12 days even without treatment, although full recovery may take longer for some individuals.²²

Chronic gout

Chronic gout develops due to ongoing inflammation that follows repeated gout attacks. It is characterised by persistent synovitis (inflammation of the synovial membrane), erosion of bone, damage to cartilage, and the formation of tophi (deposits of uric acid crystals) in tissue.²³

Causes and risk factors

The causes of gout typically involve multiple factors, such as genetic predisposition, existing medical conditions, and dietary habits.⁴ In uncommon instances, a single genetic anomaly may lead to gout, often linked with other health issues. Regardless of the specific cause, elevated levels of uric acid in the blood can lead to clinical symptoms of gout in susceptible individuals.²⁵

Risk factors associated with gout and high uric acid levels include advancing age, male gender, obesity, a diet rich in purines, alcohol consumption, and genetic susceptibility. Medications such as diuretics, low-dose aspirin, ethambutol, pyrazinamide, and cyclosporine are known to potentially raise uric acid levels and contribute to the development of gout.¹⁹ Foods that can increase uric acid levels and contribute to gout include animal products such as seafood (like shrimp and lobster), organ meats (such as liver and kidney), and red meats (like mutton and beef). Additionally, beverages such as alcohol, sweetened drinks, sodas,

and those containing high-fructose corn syrup may also play a role in the development of this condition.²⁵

Signs and symptoms

Gout attacks are intensely painful and typically occur suddenly, often overnight. Symptoms in the affected joints may include severe pain, redness or discoloration, stiffness, swelling, tenderness (even to light touch, such as from a bedsheet), and a sensation of warmth or intense heat in the joint.⁴

Triggers of symptoms

Factors that can trigger gout flares include consuming foods high in purines and taking medications such as furosemide. Environmental factors such as exposure to lead, particulate matter, temperature changes, and physiological stress have also been identified as triggers for gout flares.²⁶

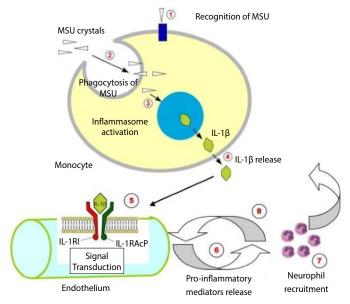


Figure 4: Inflammatory response in gout²¹

Onset of symptoms

Gout episodes often last a week or two, however, the patient may not exhibit any gout symptoms in between attacks. Nevertheless, some flares continue longer than others and may result in more severe symptoms.⁴

Treatment

Non-pharmacological treatment and prevention strategies

The management of gout involves non-pharmacological measures as adjuncts to managing acute gout attacks.²⁷ These measures include:

- 1. Sufficient rest
- 2. Topical ice application
- 3. Reduce the intake of sugar-sweetened soft drinks
- 4. Dietary and lifestyle modifications

It is recommended that people with gout limit their consumption of red meat, fish, shellfish, and alcohol, particularly those that have additional purines such as beer, lager, and whiskey.²⁷ It has been widely held that diet can reduce the chance of developing gout; in particular, consuming fewer alcoholic beverages and foods high in purines, as these are linked to elevated blood urate levels.²⁸ A summary of foods one should eat and avoid when they have gout is shown in Figure 5.²⁹

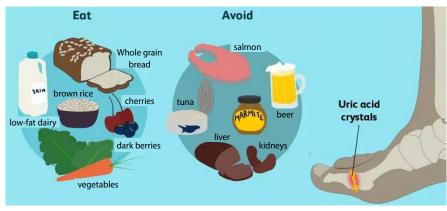


Figure 5: Foods to eat and avoid with gout²⁹

Because of its uricosuric effects, which are more pronounced at greater dosages, increasing vitamin C intake above 500 mg/day reduces the incidence of gout, whereas the intake of soy protein, non-soy legumes, and fresh fruit (> 2 portions/day) is negatively correlated with the incidence of gout.²⁷ Therefore, these dietary and lifestyle modifications can be suggested as supplementary to ULT.²⁷

Pharmacological treatment

Urate-lowering therapy (ULT), lowers blood urate levels, stops gout flare-ups, and diminishes tophi over time. ULT comprises of xanthine oxidase inhibitors (allopurinol and febuxostat), uricosuric agents (probenecid and lesinurad), and uricases (rasburicase and pegloticase). ULT is normally started several weeks after

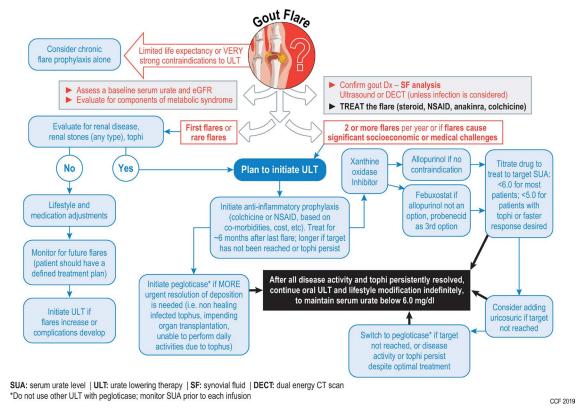


Figure 6: Management of gout: An algorithm²⁸

Table II: Treatment of acute gout flares ²⁸			
	Dosing	Duration of treatment	
NSAIDs:			
Naproxen	500 mg twice daily	3–5 days	
Celecoxib	400 mg twice daily	3–5 days	
Indomethacin	50 mg three times a day	5 days	
Ibuprofen	800 mg three times a day	5 days	
Etoricoxib	120 mg daily	8 days	
Corticosteroids:			
Prednisone	0.5 mg/kg or 40 mg daily	2–5 days	
Colchicine	0.5-1 mg, followed by 0.5 mg two hours later. Maximum of 6 mg daily.	3 days	
Anti-IL-1β biologics:			
Anakinra	100 mg daily	3–5 days	
Canakinumab	150 mg SC	1 injection (t =26 days)	

	Allopurinol	Colchicine Houdé
Dosing	 Prophylactic treatment of gout and hyperuricaemia: 50 mg, 12 hourly; Increase dose as required up to 200–400 mg. Treatment of hyperuricaemia: Initial: 200 mg, 8 hourly. Maintenance: 300–400 mg daily. 	 Acute attacks of gout: Initial: 0.5–1 mg immediately, followed by 0.5 mg every 2 hours until pain relief is obtained or until vomiting or diarrhoea occurs. Maximum: 6 mg for a minimum of 3 days, but preferably 7 days, should elapse between courses of gout treatment with colchicine.
Drug interactions	 Warfarin: increased risk of bleeding and bruising Azathioprine: increased risk of bone marrow toxicity Theophylline: increases effects by slowing drug metabolism. Enalapril (ACE-I): increased risk for anaphylaxis(rash) and Stevens-Johnson syndrome. 	 Quinidine: increase the effect of colchicine by affecting elimination Itraconazole: increased effects with fatal side effects in kidney and hepatic dysfunction. Verapamil, ketoconazole, clarithromycin, erythromycin, atazanavi ritonavir, cyclosporine: increase effects. Digoxin and statins increase the risk of toxicity of the other, rhabdomyolysis including fatality.
Contraindications	 Hypersensitivity to allopurinol or to any of the excipients Severe renal disorder Severe hepatic disorder An acute gout attack Patients who have exhibited serious adverse effects from the medicine In children, except those with malignancy Pregnancy Lactation 	 Hypersensitivity to colchicine or any of its excipients Patients undergoing haemodialysis Severe renal impairment (CrCl < 10 ml/min) Severe hepatic impairment Blood disorders Myelosuppression Leukopenia Granulocytopenia Thrombocytopenia Aplastic anaemia Coadministration with P-glycoprotein inhibitors such as ciclosporin, verapamil, or quinidine in patients with renal or hepatic impairment Coadministration with strong CYP3A4 inhibitors such as ritonavir, atazanavir, indinavir, clarithromycin, telithromycin, itraconazole, or ketoconazole in patients with renal or hepatic impairment Pregnancy and lactation
Adverse effects	 Stevens-Johnson syndrome (rash) Angioedema Thrombocytopenia Agitation Ammonia-like breath odour Bleeding gums Joint or muscle pain Bloody or black, tarry stools Cloudy urine 	 Peripheral neuritis Neuropathy Rhabdomyolysis Hepatic impairment Rash Alopecia Bone marrow depression with agranulocytosis Aplastic anaemia Thrombocytopenia Burning, "crawling", or tingling feeling in the skin Muscle weakness Numbness in the fingers or toes (usually mild)

the resolution of a gout flare, as it is believed that commencing during a flare will exacerbate the current flare. When ULT is started the flare becomes worse, which leads to patients discontinuing treatment.30

Treatment of acute gout flares

Treatment with one or more potent anti-inflammatory medications is necessary for the management of acute flares. There are four categories accessible: nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, colchicine, and anti-IL-1 β biologics. Since they are all efficient, selecting one should focus on minimising individual risks.²⁸

Treatment of established gout

Urate-lowering therapy (ULT)

Guidelines published by the Rheumatologic Society support the idea that urate-lowering is essential for the treatment of established gout.²⁸ Allopurinol is the oldest available and most used xanthine oxidase inhibitor.28

Flare prophylaxis during urate lowering

Patients with gout frequently had more flare-ups during the early stages of urate reduction, most likely because of crystals being released from dissolving urate collections.²⁸ When feasible, prophylactic anti-inflammatory medication should be supplied to patients in addition to the initial ULT. Low doses of colchicine (0.6 mg once or twice daily) are frequently used, even if other antiinflammatories may be appropriate for treating acute flares. This may be because colchicine is most likely to be tolerated during the three to nine months following the initial ULT, which is necessary to lower the risk of gout flares below pre-treatment levels.²⁸

Conclusion

Gout is a common form of inflammatory arthritis that occurs due to a buildup of uric acid, forming urate crystals in the joints over a long period. The management involves non-pharmacological measures to prevent flareups, that include sufficient rest, reduced intake of sugar-sweetened drinks and general dietary and lifestyle modifications. ULT is essential for the treatment of established gout, with the aim to reduce flare-ups. Acute symptoms can be treated with colchicine, or in severe cases with NSAIDs in combination with glucocorticoids like prednisone.

References

- Dalbeth N, Gosling AL, Gaffo A, Abhishek A. Gout. The Lancet. 2021;397(10287):1843-1855. https://doi.org/10.1016/S0140-6736(21)00569-9.
- National Institute of Arthritis and Musculoskeletal and Skin Diseases. Gout [Internet]. 2020. Available from: https://www.niams.nih.gov/health-topics/gout.
- Donvito T. The 4 stages of Gout progression (and how to stop Gout from getting worse) [Internet]. CreakyJoints. 2019. Available from: https://creakyjoints.org/living-with-arthritis/ treatment-and-wcare/medications/gout-stages-progression/, Accessed 26 Jul 2024.
- Cleveland Clinic. Gout: Symptoms, causes, treatments [Internet]. Cleveland Clinic. 2023. Available from: https://my.clevelandclinic.org/health/diseases/4755-gout.

- Mayo Clinic. Gout Symptoms and causes [Internet]. Mayo Clinic. Mayo Foundation for Medical Education and Research. 2022. Available from: https://www.mayoclinic.org/diseases-conditions/gout/symptoms-causes/syc-20372897.
- Brody B. 6 Diseases that can mimic Gout (and delay your diagnosis) [Internet]. Creaky-Joints. 2019. Available from: https://creakyjoints.org/about-arthritis/gout/gout-overview/ gout-misdiagnosis/.
- Mayo Clinic. Pseudogout Symptoms and causes [Internet]. Mayo Clinic. 2018. Available from: https://www.mayoclinic.org/diseases-conditions/pseudogout/symptoms-causes/ syc-20376983
- DeVries C. 4 ways Gout and pseudogout are different [Internet]. Arthritis-health. 2021. Available from: https://www.arthritis-health.com/blog/4-comparisons-gout-and-pseud-
- Dalbeth N, Choi HK, Joosten LAB, et al. Gout. Nature Reviews Disease Primers [Internet]. 2019;5(1). https://doi.org/10.1038/s41572-019-0115-y.
- Kanwal A, Bajwa MA, Samreen T, et al. A comprehensive review on gout: the epidemiological trends, pathophysiology, clinical presentation, diagnosis and treatment. Journal of the Pakistan Medical Association. 2020;71(4):1-12. https://doi.org/10.47391/JPMA.313.
- George C, Minter DA. Hyperuricemia [Internet]. Nih.gov. StatPearls Publishing; 2019. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459218/.
- Breshears MA, Confer AW. The urinary system. Pathologic Basis of Veterinary Disease [Internet]. 2017;617-681.e1. https://doi.org/10.1016/B978-0-323-35775-3.00011-4.
- Maharajan D. Uric acid metabolism and Gout [Internet]. SlideShare. 2019. Available from: https://www.slideshare.net/slideshow/uric-acid-metabolism-and-gout/187266766
- Xiong Q, Liu J, Xu Y. Effects of uric acid on Diabetes Mellitus and its chronic complications. International Journal of Endocrinology, 2019;2019:1-8.
- https://doi.org/10.1155/2019/9691345.
- Shahin L, Patel KM, Heydari MK, Kesselman MM. Hyperuricemia and cardiovascular risk. Cureus. 2021;13(5):e14855. https://doi.org/10.7759/cureus.14855
- National Institute of Arthritis and Musculoskeletal and Skin Diseases. Gout [Internet]. 2020. Available from: https://www.niams.nih.gov/health-topics/gout.
- Kim JH, Kwon MJ, Choi HG, et al. The association between hyperuricemia and cardiovascular disease history: A cross-sectional study using KoGES HEXA data. Medicine. 2022;101(51):e32338. https://doi.org/10.1097/MD.0000000000032338
- Chittoor G, Voruganti VS. Hyperuricemia and Gout. Principles of Nutrigenetics and Nutrigenomics. 2020;389-94. https://doi.org/10.1016/B978-0-12-804572-5.00053-7
- Zhao J, Wei K, Jiang P, et al. Inflammatory response to regulated cell death in Gout and its functional implications. Frontiers in Immunology. 2022;13. https://doi.org/10.3389/ fimmu.2022.888306
- So AK, Martinon F. Inflammation in gout: mechanisms and therapeutic targets. Nature Reviews Rheumatology. 2017;13(11):639-47. https://doi.org/10.1038/nrrheum.2017.155.
- 22. Blevins HM, Xu Y, Biby S, Zhang S. The NLRP3 inflammasome pathway: A review of mechanisms and inhibitors for the treatment of inflammatory diseases. Frontiers in Aging Neuroscience [Internet]. 2022;14. https://doi.org/10.3389/fnagi.2022.879021.
- Coburn BW, Mikuls TR, Treatment options for acute Gout, Federal Practitioner (Internet), 2016:33(1):35-40.
- Ragab G, Elshahaly M, Bardin T. Gout: An old disease in new perspective. Journal of Advanced Research [Internet]. 2017;8(5):495-511. https://doi.org/10.1016/j.jare.2017.04.008.
- Cleveland Clinic. Gout: Symptoms, causes, treatments [Internet]. Cleveland Clinic. 2023. Available from: https://mv.clevelandclinic.org/health/diseases/4755-gout.
- Fenando A, Widrich J, Rednam M, Gujarathi R. Gout [Internet]. PubMed. Treasure Island (FL): StatPearls Publishing; 2022. Available from: https://www.ncbi.nlm.nih.gov/books/ NBK546606/.
- Helget LN, Mikuls TR. Environmental triggers of hyperuricemia and Gout. Rheumatic Disease Clinics of North America, 2022;48(4):891-906, https://doi.org/10.1016/i. rdc 2022 06 009
- Abhishek A, Doherty M. Education and non-pharmacological approaches for gout. Rheumatology [Internet]. 2018;57(suppl_1):i51-8. https://doi.org/10.1093/rheumatology/
- Pillinger MH, Mandell BF. Therapeutic approaches in the treatment of gout. Seminars in Arthritis and Rheumatism. 2020;50(3):S24-30. https://doi.org/10.1016/j.semarthrit 2020 04 010
- 30. Poulson B. Foods to avoid with Gout: Seafood, yeast, red meat, and more [Internet]. Verywell Health. 2023. Available from: https://www.verywellhealth.com/foods-to-avoid-withaout-5093103.
- 31. Evidence reviews for timing of urate-lowering therapy in relation to a flare in people with gout: Gout: diagnosis and management: Evidence review F [Internet]. PubMed. London: National Institute for Health and Care Excellence (NICE); 2022. Available from: https:// www.ncbi.nlm.nih.gov/books/NBK583523/#:~:text=Long%2Dterm%20management%20 of%20gout.
- Allopurinol (Oral Route) side effects Mayo Clinic [Internet]. www.mayoclinic.org. Available from: https://www.mayoclinic.org/drugs-supplements/allopurinol-oral-route/sideeffects/dra-20075476?p=1.
- Colchicine (Oral Route) side effects Mayo Clinic [Internet]. www.mayoclinic.org. Available from: https://www.mayoclinic.org/drugs-supplements/colchicine-oral-route/side-effects/ $drg-20067653? p=1\#: \sim : text = Stop \% 20 taking \% 20 this \% 20 medicine \% 20 as.$