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Prediction of the performance of an on-farm direct expansion bulk milk cooler 
using artifi cial neural networks

The performance of an on-farm direct expansion bulk milk cooler (DXBMC) is predicted through the use of artifi cial neural network 
models. Data was collected at an existing farm for the period of April 2016–March 2017. The data were submitted to MATLAB 
to develop artifi cial neural networks (ANNs) and simulate the energy consumption and coeffi  cient of performance (COP) of the 
DXBMC. The data was split 70:15:15, representing training, validation and testing datasets respectively. Two ANNs were developed 
for the energy consumption and COP respectively. Several neural networks were created and trained in a systematic procedure. 
Selection of the best combination of predictors for the models was based on the coeffi  cient of determination (R), root mean square 
error (RMSE) and mean absolute percentage error (MAPE). The importance of the inputs to the output were also deduced. The 
results showed high precision in predictions for both energy consumption and COP, as the values of the MAPE were less than 5%. 
The R2 values for predicting the electrical energy consumption and COP were found to be 0,9459 and 0,9999964, respectively. 
Through a sensitivity analysis, the volume of milk proved to be the most important factor infl uencing energy consumption of the 
on-farm DXBMC as well as its COP. The application of ANN models for predicting the performance of a bulk milk cooler is useful for 
dairy farms as they require thorough energy management and strategies for the effi  cient operation of a milk cooling system since 
it is one of the major operations that consumes much energy. 

Keywords: Direct expansion bulk milk cooler; artifi cial neural network; coeffi  cient of performance; dairy milk cooling; energy 
consumption

Voorspelling van die prestasie van ’n op-die-plaas-tipe direkteuitsetting-grootmaatmelkverkoeler met behulp van 

kunsmatige neurale netwerke:  Die prestasie van ’n op-die-plaas-tipe direkteuitsetting-grootmaatmelkverkoeler (“DXBMC” na 
aanleiding van die bekende Engelse benaming waarmee daarna verwys word) is voorspel deur die gebruik van kunsmatige neurale 
netwerkmodelle. Data is op ’n bestaande plaas ingesamel gedurende die tydperk April 2016–Maart 2017. Die data is in MATLAB 
opgelaai om kunsmatige neurale netwerke (KNN’e) te ontwikkel en die energieverbruik en die prestasiekoëffi  siënt (PK) van die 
DXBMC te simuleer. Die data is 70:15:15 verdeel, wat onderskeidelik opleidings-, validerings- en toetsdatastelle verteenwoordig. 
Twee KNN’e is vir die energieverbruik en die PK onderskeidelik ontwikkel. Verskeie neurale netwerke is geskep en in ’n sistematiese 
prosedure opgelei. Seleksie van die beste kombinasie van voorspellers vir die modelle is gebaseer op die bepaaldheidskoëffi  siënt 
(R), wortel van gemiddelde kwadraatfout (WGKF) en gemiddelde absolute persentasiefout (GAPF). Die belangrikheid van die insette 
vir die uitset is ook afgelei. Die resultate het hoë akkuraatheid in voorspellings van die energieverbruik en die PK getoon, aangesien 
die waardes van die GAPF minder as 5% was. Daar is gevind dat die R2- waardes vir die voorspelling van die elektriese energieverbruik 
en PK onderskeidelik 0,9459 en 0,9999964 is. Deur ’n sensitiwiteitsanalise het dit geblyk dat die volume melk die belangrikste faktor 
is wat die energieverbruik van ’n op-die-plaas-tipe DXBMC sowel as die PK daarvan beïnvloed. Die toepassing van KNN-modelle vir 
die voorspelling van die prestasie van ’n grootmaatmelkverkoeler is nuttig vir melkplase, aangesien hulle deeglike energiebestuur 
en strategieë benodig vir die doeltreff ende werking van ’n melkverkoelingstelsel, want dit is een van die belangrikste bedrywighede 
en verbruik baie energie.

Sleutelwoorde: Direkteuitsetting-grootmaatmelkverkoeler; kunsmatige neurale netwerk; prestasiekoëffi  siënt; suiwelmelkver-
koeling; kragverbruik
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ANN-based technique for modelling the operation of a cooling 
system that used CO2 as a refrigerant in an industrial setup. 
Ribault et al. (2019) used an ANN to forecast temperature for a 
cold room where a dynamic programming algorithm was used. 
Also, dimensionless correlation and ANN models were 
developed by Gill and Singh (2018) to predict the mass fl ow rate 
in a vapour compression refrigeration system. In several other 
studies, ANNs were used widely on various refrigeration systems 
to predict energy (power) consumption, cooling capacity and 
coeffi  cient of performance (Swider et al., 2001; Ertunc & Hosoz, 
2006; Navarro-Esbrı et al., 2007; Escobedo-Trujillo et al., 2016; 
Barroso-Maldonado et al., 2017; Aprea et al., 2017). Numerous 
techniques for performance prediction of vapour compression 
refrigeration systems based on simulations and modelling have 
been presented by Ding (2007). 

Studies on the application of machine learning have also been 
conducted on dairy farms. Shine et al. (2018) presented a study 
where a range of machine learning algorithms were applied to 
the prediction of electricity and on-farm direct water 
consumption on pasture-based commercial Irish dairy farms. 
Sefeedpari et al. (2014) implemented an adaptive neural-fuzzy 
inference system to model output energy based on energies of 
fossil fuels and electricity inputs for dairy farms in Iran. It is 
worth mentioning that the accuracy of model performance is 
useful to predict energy usage in a dairy enterprise. It forms the 
basis for improved energy effi  ciency planning strategies 
towards the improved operation of the farm. Based on the 
reviewed literature, ANN models have proved to have high 
accuracy in predicting the performance of refrigeration systems. 
However, to the author’s knowledge the application of ANN to 
bulk milk coolers is only covered to a limited extent in literature. 

The main objective of the present study is to develop ANN 
models for predicting the performance of an on-farm DXBMC. 
Application of the developed ANNs to the cooling energy 
requirements on a dairy farm will provide insight into the 
cooling performance of the DXBMC. This insight will allow for 
optimisation of the cooling system, performance enhancement, 
maintenance scheduling as well as energy savings where milk 
temperature has to be kept at the best possible minimum. By 

Introduction

The use of artifi cial intelligence (AI) systems and machine 
learning techniques in the refrigeration fi eld has been on the 
rise over the years to solve some complex problems, as reported 
by Mohanraj et al. (2012). The AI systems include ANN, fuzzy 
logic and a fusion of many systems, which combine two or more 
techniques (Kalogirou, 2003; Mellit & Kalogirou, 2008; Mohanraj 
et al., 2012). ANNs are fast and simple models that can solve 
problems of a complex nature in terms of interrelationships 
among variables through extracting the nonlinear relationships 
between variables. They are biologically inspired computational 
models, have been used to portray complicated non-linear 
interrelationships among a multitude of factors, and they also 
mimic the brain function in a computerised way based on the 
transmission and receiving of signals  (Agatonovic-Kustrin & 
Beresford, 2000; Kalogirou, 2003; Mellit & Kalogirou, 2008; 
Mohanraj et al., 2012). Figure 1 presents an illustration of an 
artifi cial neuron.

ANNs are built from interconnected neurons that process 
information from the inputs to the desired outputs. The 
generation of the output from the inputs is facilitated by the 
connection weight, which links the inputs to the summation 
and transfer functions. Based on the literature, diff erent ANN 
architectures like multilayer feedforward networks (MLFFN), 
generalised regression neural networks (GRNN), adaptive 
neuro-fuzzy interface systems (ANFIS) and radial biased function 
networks (RBFN), amongst others  (Jang, 1993; Kalogirou, 2003; 
Mellit & Kalogirou, 2008; Mohanraj et al., 2012), have been 
applied to refrigeration systems. Over the years, research has 
been conducted on a variety of refrigeration systems using 
diff erent approaches and ANN model architectures. Ertunc and 
Hosoz (2006) conducted a study on a cascade refrigeration 
system where MLFFN was applied to predict its performance. 
The experimental results were closely emulated by the ANN 
model. An investigation by Redy et al. (2020) focused on using 
multiple regression analysis (MRA) and ANN to predict the 
performance of a domestic refrigerator. The study concluded 
that performance prediction using the ANN model was very 
accurate. In another study, Opalic et al. (2020) established an 

Figure 1: Artifi cial neuron adapted from Kalogirou (2003), and Mellit and Kalogirou (2008)
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Formulation and training of the ANNs

The collected data for a year (April 2016–March 2017) was 
submitted to MATLAB to develop artifi cial ANNs and simulate 
the energy consumption and COP of the DXBMC. The data was 
split 70:15:15, representing training, validation and testing 
datasets respectively. Two ANN models were developed, that is, 
for the energy consumption and COP respectively. For this 
study, an MLFFN trained by the Levenberg Marquardt (LM) was 
applied. Several neural networks were created and trained in a 
systematic procedure. The basic neural networks are represented 
in Figure 2. The basic architectural structure of an ANN network 
is separated into three layers, namely the input, hidden and 
output layers (Figure 2). The  input layer comprised the input 
variables, in this study the milk volume (Vmilk), milk temperature 
(Tmilk), ambient temperature (Tamb), room temperature 
(Troom) and relative humidity (RH), which were considered for 
the energy consumption ANN (ANNE), while energy consump-
tion, Vmilk, Tmilk, Tamb, Troom and RH were used for the COP 
ANN (ANNCOP). Table I shows the details of the developed ANNs.

To evaluate the best combination of input parameters to predict 
the energy consumption and the COP of the DXBMC, the 
forward stepwise regression selection method was applied. In 
this method, all the variables are taken as inputs to the ANN to 
determine the best combination of variables for predicting the 
energy consumption and the COP respectively. Selection of the 
best combination was based on R, RMSE and MAPE. Figure 3 
illustrates the neural network architecture for energy 
consumption and the COP of a DXBMC. 

Simulation, validation and error analysis

Performance of the network was tested using R while the 
reliability of the model was determined through the MAPE and 
the comparison between the measured and predicted values 
was deduced by the RMSE. The following equations show how 
R, MAPE and RMSE are calculated: 

using the developed ANN model, the performance of the 
DXBMC is determined in terms of the energy consumption and 
the COP during the daily milking schedule of a dairy farm. 

Materials and Methods

Data collection

Data was collected at an existing farm according to the 
procedures laid out by Mhundwa et al. (2017) for the period 
April 2016–March 2017. A twice a day milking routine was 
observed throughout the year, that is, in the early morning 
(05:00–07:00) and late afternoon (15:00–17:00). The schematic 
layout of the experimental procedure is shown in Figure 2.

Theory and calculations

The thermal heat removed from the milk by the DXBMC is 
calculated in Equation 1:

Equation 1

(1)

Where
m = mass of milk delivered to the bulk milk cooler (kg)
Cpm = specifi c heat capacity of milk (3,93 kJ/kg °C)
Tmi = milk inlet temperature delivered to the DXBMC
Tmf = fi nal milk temperature in the DXBMC (4°C)

Equation 2 indicates the COP calculation for the DXBMC:

Equation 2

       (2)

Where 
E = measured energy consumption for the DXBMC (kWh)

Figure 2: Experimental layout of the DXBMC a) condensing unit, b) room temperature sensor, c) bulk milk cooler, 
d) milk temperature sensor, e) power meter, f) data loggers, g) relative humidity and ambient temperature sensor 
(Source: Mhundwa et al., 2018)
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(3)

     (4)

    (5)

Where for equations 1, 2 and 3:
M = measured value
P = predicted value 
n = number of data 

Each predictor for the best performing ANN model was tested 
to determine its usefulness in predicting the outputs (energy 
consumption and COP). This was done by removing one 
predictor at a time and checking the increase and decrease in 
the MAPE, RMSE and R. 

Ranking of predictors’ importance in respect of output

The  connection weight approach was used to rank the model 
inputs according to their eff ect on the output. According to 
Olden and Jackson (2002) and Olden et al., (2004), the connection 
weights method determines the relative importance of 

predictors of an ANN model as a function of the NN weights. 
This method was selected based on its accuracy as it is derived 
from the weights of the ANN (De Oña & Garrido, 2014). 

Measurement and calculation uncertainty

Experimental data and derived calculations are governed by the 
accuracy of the instruments used to collect the data (Coleman & 
Steele, 2018). In this study, temperature, relative humidity, 
ambient temperature and power measurements had tolerances 
of ± 0,15°C, ± 2,5%, ± 0,21°C and 1% respectively (Mhundwa et 
al., 2018).

Results and Discussion

The performance of a DXBMC in terms of energy consumption 
and COP can be predicted using the ANN model with the input 
parameters as shown in Figure 1. The number of neurons 
considered for this study was between two and 12 for both the 
energy consumption and COP prediction, and the network was 
trained several times so as minimise the error between the 
predicted values. Table II shows a correlation matrix for the 
variables.

The correlation coeffi  cients presented in Table II were deduced 
from Pearson’s method. It can be observed that most of the 
correlation coeffi  cients are low except for Troom and Tamb 
(0,960), Troom and RH (–0,829) and Tamb and RH (–0,877). This is 
due to the inverse and direct interplay of various weather-
related variables. It should be noted that high correlations 
between variables can result in overfi tting of a model.

Table I: Summary of the developed ANNs

Structure

Transfer function

Training method

Database size
Database partitioning

Inputs

Hidden layer
Output 

Hidden neurons
Output neurons

Number of neurons
1.  Milk temperature
2.  Milk volume
3.  Room temperature
4.  Relative humidity
5.  Ambient temperature

Number of neurons = 2–12
Number of neurons = 1 
(energy consumption)
Tangent sigmoid
Pure linear
Training goals: minimum
mean square error
Epoch: 1 000 times
Algorithm: Levenberg Marquardt
180
Training: 70%
Validation: 15%
Test: 15%

1.  Milk temperature
2.  Milk volume
3.  Room temperature
4.  Relative humidity
5.  Ambient temperature
6.  Energy consumption

Number of neurons = 1 (COP)

 180

 ANN
E
 description ANN

COP
 description
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ANN Models

ANN models were developed with all predictors, and Table III 
and Table IV illustrate the performance indicators.

As indicated in Table III, Vmilk constitutes the bulk of the 
predictive information for energy consumption. This is due to its 
high correlation (0,84) to energy consumption. It can be 
observed that adding Tmilk as one of the predictors led to 
improved performance of the ANN model. The RMSE and MAPE 
decreased by 43,56% and 44,15% respectively, while R increased 
by 9% with 12 neurons. Further addition of Troom to the 
predictors reduced the RMSE by a further 13% and MAPE by 7%, 
and R increased to 0,9725, from 0,9636. By adding Tamb as one 
of the predictors, reduced performance is noticeable, with an 

Figure 3: Neural network architecture for energy consumption and the COP

Table II: Correlation matrix for the variables

Variables Vmilk Tamb RH Tmi Troom

Vmilk 1    

Tamb –0,497 1   

RH 0,395 –0,877 1  

Tmi 0,041 0,410 –0,491 1 

Troom –0,472 0,960 –0,829 0,445 1
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MAPE. The performance of the network after removal of Tamb is 
such that R and MAPE increase, while RMSE decreases. A network 
with energy consumption, Vmilk and Tmilk exhibits the best 
performance with the highest R (0,99999916) and the lowest 
RMSE (0,00025759). Energy consumption and Vmilk contain 
most of the predictive information for the COP of a DXBMC. It 
can be deduced that adding Vmilk as one of the predictors led 
to improved performance of the ANN model. The RMSE and 
MAPE decreased by 72,42% and 74,07% respectively, while R 
increased by 157,45%. Further addition of Tmilk to the predictors 
reduced the RMSE by a further 99,48% and MAPE by 99,49%, 
and R increased from 0,96706873 to 0,99999916. Besides, by 
adding Troom as a predictor, reduced performance is noticeable 
with an increase in RMSE as well, and a slight reduction in R. 
Figure 4 and Figure 5 illustrate the ANN predicted energy 
consumption, and the actual energy consumption and COP for 
a DXBMC. 

increase in RMSE to 6,075 kWh as well as a slight reduction in R 
to 0,9679. This was because of the interaction eff ect between 
Tamb and Troom due to location of the DXBMC, as reported in 
Mhundwa et al. (2017), as a well as the redundancy caused by 
the high correlation coeffi  cient between the two variables as 
shown in Table III. Addition of RH slightly increased R to 0,9726, 
and reduced RMSE and MAPE by 7% and 3% respectively. The 
performance of ANN model 1 (Table III) indicates that all fi ve the 
input variables led to better performance in terms of R (0,9726). 
The performance of model 1 and model 3 are closely related in 
terms of R. However, the RMSE and MAPE are slightly lower for 
model 3. 

The deduction from the results in Table IV are that using all the 
predictors in the model leads to a better performance of the 
network. Removing RH as one of the predictors reduces R by 
less than 0,00025%, with an increase in RMSE and a decrease in 

Table III: ANNE models 

 Model Predictors NN RMSE (kWh) MAPE (%) R 

 1 Vmilk+Tmilk+Troom+Tamb+RH 6 5,6496 4,1621 0,9726

 2 Vmilk+Tmilk+Troom+Tamb 8 6,0752 4,2886 0,9679

 3 Vmilk+Tmilk+Troom 8 5,6319 4,1473 0,9725

 4 Vmilk+Tmilk 12 6,4736 4,4465 0,9636

 5 Vmilk 8 11,4689 7,9619 0,8805

Table IV: ANNCOP models

 Model Predictors NN RMSE MAPE (%) R 

 1 Energy consumption+Vmilk+Tmilk+Troom+Tamb+RH 12 0,00037208 0,00919173 0,9999982

 2 Energy consumption+Vmilk+Tmilk+Troom+Tamb 10 0,00057565 0,0076484 0,99999573

 3 Energy consumption+Vmilk+Tmilk+Troom 12 0,00031892 0,00953144 0,99999867

 4 Energy consumption+Vmilk+Tmilk 8 0,00025759 0,00838367 0,99999916

 5 Energy consumption+Vmilk 10 0,04999166 1,65165818 0,96706873

 6 Energy consumption 10 0,1812502 6,3688037 0,37563743

Figure 4: ANN-predicted energy consumption and actual energy con-
sumption for a DXBMC
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Figure 5: ANN-predicted energy consumption and actual COP for a DXBMC

Figure 6:  ANNE regression plots
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Comparison of the sampled experimental data and ANN 
prediction results for energy consumption and COP are shown 
in Figures 4 and 5. The plots give a visual representation of the 
prediction errors. The comparisons show that the ANNs 
signifi cantly represented the experimental data; thus, the results 
confi rm the remarkable capability of the ANN models to predict 
energy consumption and COP. Figures 6 and 7 illustrate the 
regression plots for the ANNE and ANNCOP.
 
The four plots in Figure 6 and Figure 7 represent the regression 
plots for training, validation, testing and all data for the energy 
consumption and COP, respectively. The perfect result of 
outputs = targets is represented by the dotted black line, while 
the continuous lines are representing the best-adapted linear 
regression between outputs and targets (Figure 6 and Figure 7). 
The target and output data generated by the artifi cial neural 
network form the corresponding horizontal and the vertical 
axes. It can be deduced that the training data have a good fi t 
with R = 0,97989, meaning the output data of the ANN imitated 
the desired target data. The results also show that the R values 
were greater than 0,95 for the validation and test data. Likewise, 
it can be construed from Figure 6 that the training data indicate 
a good fi t, with R = 0,99999. The validation and test results also 
yielded R values above 0,99. The result indicated that the energy 
consumption and COP of a DXBMC were successfully predicted 

with high accuracy by a single-layered ANN. Figures 8 and 9 
show the validation performance of the developed ANNs.

The creation of the ANNs’ structure, used in the modelling of the 
energy consumption COP, was performed with 10 epochs and 
12 epochs respectively. The best validation agreement at mean 
squared error (MSE) = 34,5666 was reached at the 10th epoch, 
where R2 = 0,9759, while the MSE = 1,851×10-6 was reached at 
the 12th epoch, at R2 = 0,9999964 for the COP. Figures 8 and 9 
additionally illustrate the practicality of the training results for 
the ANNs. This is seen by the negligible errors between the 
training and validation datasets. Of note is that, upon further 
training of the ANNs, these errors did not change meaningfully. 
Figures 10 and 11 illustrate the error histogram for ANNE and 
ANNCOP.

The ANNE and ANNCOP model errors were deduced from the 
diff erence between the predicted values and the actual values. 
In that regard, the positive errors indicate that the predicted 
value for the ANN underestimated the actual value, while 
negative errors indicate that the predicted value overestimated 
the actual value. Analysing Figures 10 and 11 we can observe 
that the majority of the errors are located next to the zero-error 
line. Thus, the prediction given by the trained ANN is quite 
acceptable.

Figure 7: ANNCOP regression plots
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Relative importance of the predictors 

The index of relative importance (Ri) was deduced for each of 
the predictors for determining the relation of the predictor to 
the response as illustrated in Figures 12 and 13.

As indicated in Figure 12, Vmilk, Tmilk and Troom varied in the 
positive direction, whereas RH and Tamb varied in the negative 
direction at almost the same magnitude. This implies that Vmilk, 
Tmilk and Troom had a positive relationship with energy 
consumption. Accordingly, Vmilk had the most signifi cant 
contribution to energy consumption (Ri= 1,902) followed by 
Troom (Ri = 1,378). The results depict that the energy 

consumption of the DXBMC was more sensitive to the change in 
Vmilk. According to Figure 13, energy consumption is the most 
crucial variable in predicting COP of a DXBMC (Ri = –5,817), 
followed by Vmilk (Ri = 3,350) and Tmilk (Ri = 1,284). Troom, 
Tamb and RH had the least contribution to the COP of the 
system. The COP of the DXBMC was the more sensitive to the 
change in the energy consumption followed by Vmilk and Tmilk. 
Furthermore, it should be mentioned that the COP was least 
sensitive to Troom, Tamb and RH. The fi ndings from this study 
suggest that Vmilk and Tmilk are signifi cant predictors for the 
performance of a DXBMC. As such, optimising Vmilk and Tmilk 
will contribute to the effi  cient operation of the DXBMC. Mostly, 

Figure 8:  ANNE validation performance

Figure 9: ANNCOP validation performance
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Figure 11:  Error distribution for ANNCOP

Figure 10:  Error distribution for ANNE
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raw milk leaves the cow at a temperature of 35–37 °C and rapid 
cooling to a temperature of 4 °C renders it safe (Lewis and 
Heppell, 2000; Holm et al., 2004; Upton et al., 2010). This suggests 
that in a direct milking-to-refrigeration system, milk is delivered 
to the DXBMC at approximately 32 °C (Mhundwa et al., 2018); 
hence energy consumption will also increase. On the other 
hand, previous studies (Peebbles et al., 1993; O’Keeff e, 2007; 
Murphy et al., 2013; Mhundwa et al., 2016) revealed that milk 
pre-cooling using groundwater as the coolant can reduce the 
temperature of the milk to an average of 19,9 °C. These studies 
showed that there was a 50,3% decrease in energy consumption, 
and the use of a raw milk precooler enhanced the effi  ciency of 
the DXBMC, which led to a signifi cant reduction in energy 
consumption. Intuitively, Tmilk can be eff ectively controlled on 
a dairy farm. However, herd size  and selection of cattle breeds, 
farm size and quality of feed may in turn have an impact on the 
volume of milk (Vmilk) produced (Dillon et al., 2003; Franzoi et 
al., 2020). 

Figure 12: Relative Importance of predictors for ANNE 

Figure 13:  Relative Importance of predictors for ANNCOP 

Conclusion

The performance of an on-farm DXBMC was analysed in a bid to 
predict energy consumption and coeffi  cient of performance 
through models that were based on ANNs trained with a 
database obtained from data that was measured on an existing 
dairy farm. The fi ndings from the study are summarised as 
follows:

1. The result indicated that the energy consumption and COP 
of a DXBMC could be predicted by a single-layered neural 
network

 2. The accuracy given by the ANN models are acceptable and 
can be used for on-farm DXBMCs to monitor and optimise 
the milk cooling operations. 

3. The index of relative importance of the predictors show 
that Vmilk and Tmilk are the most essential variables in 
predicting both energy consumption and COP of a DXBMC.

4. The energy consumption is mostly sensitive to the Vmilk, 
whereas the COP is mostly sensitive to energy consumption.
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