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The performance of an on-farm direct expansion bulk milk cooler (DXBMC) is predicted through the use of artificial neural network
models. Data was collected at an existing farm for the period of April 2016-March 2017. The data were submitted to MATLAB
to develop artificial neural networks (ANNs) and simulate the energy consumption and coefficient of performance (COP) of the
DXBMC. The data was split 70:15:15, representing training, validation and testing datasets respectively. Two ANNs were developed
for the energy consumption and COP respectively. Several neural networks were created and trained in a systematic procedure.
Selection of the best combination of predictors for the models was based on the coefficient of determination (R), root mean square
error (RMSE) and mean absolute percentage error (MAPE). The importance of the inputs to the output were also deduced. The
results showed high precision in predictions for both energy consumption and COP, as the values of the MAPE were less than 5%.
The R? values for predicting the electrical energy consumption and COP were found to be 0,9459 and 0,9999964, respectively.
Through a sensitivity analysis, the volume of milk proved to be the most important factor influencing energy consumption of the
on-farm DXBMC as well as its COP. The application of ANN models for predicting the performance of a bulk milk cooler is useful for
dairy farms as they require thorough energy management and strategies for the efficient operation of a milk cooling system since
it is one of the major operations that consumes much energy.

Keywords: Direct expansion bulk milk cooler; artificial neural network; coefficient of performance; dairy milk cooling; energy
consumption

Voorspelling van die prestasie van 'n op-die-plaas-tipe direkteuitsetting-grootmaatmelkverkoeler met behulp van
kunsmatige neurale netwerke: Die prestasie van 'n op-die-plaas-tipe direkteuitsetting-grootmaatmelkverkoeler (“DXBMC" na
aanleiding van die bekende Engelse benaming waarmee daarna verwys word) is voorspel deur die gebruik van kunsmatige neurale
netwerkmodelle. Data is op 'n bestaande plaas ingesamel gedurende die tydperk April 2016-Maart 2017. Die data is in MATLAB
opgelaai om kunsmatige neurale netwerke (KNN'e) te ontwikkel en die energieverbruik en die prestasiekoéffisiént (PK) van die
DXBMC te simuleer. Die data is 70:15:15 verdeel, wat onderskeidelik opleidings-, validerings- en toetsdatastelle verteenwoordig.
Twee KNN'e is vir die energieverbruik en die PK onderskeidelik ontwikkel. Verskeie neurale netwerke is geskep en in 'n sistematiese
prosedure opgelei. Seleksie van die beste kombinasie van voorspellers vir die modelle is gebaseer op die bepaaldheidskoéffisiént
(R), wortel van gemiddelde kwadraatfout (WGKF) en gemiddelde absolute persentasiefout (GAPF). Die belangrikheid van die insette
vir die uitset is ook afgelei. Die resultate het hoé akkuraatheid in voorspellings van die energieverbruik en die PK getoon, aangesien
die waardes van die GAPF minder as 5% was. Daar is gevind dat die R*waardes vir die voorspelling van die elektriese energieverbruik
en PK onderskeidelik 0,9459 en 0,9999964 is. Deur 'n sensitiwiteitsanalise het dit geblyk dat die volume melk die belangrikste faktor
is wat die energieverbruik van 'n op-die-plaas-tipe DXBMC sowel as die PK daarvan beinvloed. Die toepassing van KNN-modelle vir
die voorspelling van die prestasie van 'n grootmaatmelkverkoeler is nuttig vir melkplase, aangesien hulle deeglike energiebestuur
en strategieé benodig vir die doeltreffende werking van 'n melkverkoelingstelsel, want dit is een van die belangrikste bedrywighede
en verbruik baie energie.

Sleutelwoorde: Direkteuitsetting-grootmaatmelkverkoeler; kunsmatige neurale netwerk; prestasiekoéffisiént; suiwelmelkver-
koeling; kragverbruik
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Introduction

The use of artificial intelligence (Al) systems and machine
learning techniques in the refrigeration field has been on the
rise over the years to solve some complex problems, as reported
by Mohanraj et al. (2012). The Al systems include ANN, fuzzy
logic and a fusion of many systems, which combine two or more
techniques (Kalogirou, 2003; Mellit & Kalogirou, 2008; Mohanraj
et al, 2012). ANNs are fast and simple models that can solve
problems of a complex nature in terms of interrelationships
among variables through extracting the nonlinear relationships
between variables. They are biologically inspired computational
models, have been used to portray complicated non-linear
interrelationships among a multitude of factors, and they also
mimic the brain function in a computerised way based on the
transmission and receiving of signals (Agatonovic-Kustrin &
Beresford, 2000; Kalogirou, 2003; Mellit & Kalogirou, 2008;
Mohanraj et al, 2012). Figure 1 presents an illustration of an
artificial neuron.

ANNs are built from interconnected neurons that process
information from the inputs to the desired outputs. The
generation of the output from the inputs is facilitated by the
connection weight, which links the inputs to the summation
and transfer functions. Based on the literature, different ANN
architectures like multilayer feedforward networks (MLFFN),
generalised regression neural networks (GRNN), adaptive
neuro-fuzzy interface systems (ANFIS) and radial biased function
networks (RBFN), amongst others (Jang, 1993; Kalogirou, 2003;
Mellit & Kalogirou, 2008; Mohanraj et al, 2012), have been
applied to refrigeration systems. Over the years, research has
been conducted on a variety of refrigeration systems using
different approaches and ANN model architectures. Ertunc and
Hosoz (2006) conducted a study on a cascade refrigeration
system where MLFFN was applied to predict its performance.
The experimental results were closely emulated by the ANN
model. An investigation by Redy et al. (2020) focused on using
multiple regression analysis (MRA) and ANN to predict the
performance of a domestic refrigerator. The study concluded
that performance prediction using the ANN model was very
accurate. In another study, Opalic et al. (2020) established an

ANN-based technique for modelling the operation of a cooling
system that used CO, as a refrigerant in an industrial setup.
Ribault et al. (2019) used an ANN to forecast temperature for a
cold room where a dynamic programming algorithm was used.
Also, dimensionless correlation and ANN models were
developed by Gill and Singh (2018) to predict the mass flow rate
in a vapour compression refrigeration system. In several other
studies, ANNs were used widely on various refrigeration systems
to predict energy (power) consumption, cooling capacity and
coefficient of performance (Swider et al.,, 2001; Ertunc & Hosoz,
2006; Navarro-Esbri et al,, 2007; Escobedo-Trujillo et al., 2016;
Barroso-Maldonado et al, 2017; Aprea et al, 2017). Numerous
techniques for performance prediction of vapour compression
refrigeration systems based on simulations and modelling have
been presented by Ding (2007).

Studies on the application of machine learning have also been
conducted on dairy farms. Shine et al. (2018) presented a study
where a range of machine learning algorithms were applied to
the prediction of electricity and on-farm direct water
consumption on pasture-based commercial Irish dairy farms.
Sefeedpari et al. (2014) implemented an adaptive neural-fuzzy
inference system to model output energy based on energies of
fossil fuels and electricity inputs for dairy farms in Iran. It is
worth mentioning that the accuracy of model performance is
useful to predict energy usage in a dairy enterprise. It forms the
basis for improved energy efficiency planning strategies
towards the improved operation of the farm. Based on the
reviewed literature, ANN models have proved to have high
accuracy in predicting the performance of refrigeration systems.
However, to the author’s knowledge the application of ANN to
bulk milk coolers is only covered to a limited extent in literature.

The main objective of the present study is to develop ANN
models for predicting the performance of an on-farm DXBMC.
Application of the developed ANNs to the cooling energy
requirements on a dairy farm will provide insight into the
cooling performance of the DXBMC. This insight will allow for
optimisation of the cooling system, performance enhancement,
maintenance scheduling as well as energy savings where milk
temperature has to be kept at the best possible minimum. By
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Figure 1: Artificial neuron adapted from Kalogirou (2003), and Mellit and Kalogirou (2008)
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using the developed ANN model, the performance of the
DXBMC is determined in terms of the energy consumption and
the COP during the daily milking schedule of a dairy farm.

Materials and Methods
Data collection

Data was collected at an existing farm according to the
procedures laid out by Mhundwa et al. (2017) for the period
April 2016-March 2017. A twice a day milking routine was
observed throughout the year, that is, in the early morning
(05:00-07:00) and late afternoon (15:00-17:00). The schematic
layout of the experimental procedure is shown in Figure 2.

Theory and calculations

The thermal heat removed from the milk by the DXBMC is
calculated in Equation 1:

Equation 1

-mC, (T, -T,)
- 3600
Where
m = mass of milk delivered to the bulk milk cooler (kg)
Com= specific heat capacity of milk (3,93 ki/kg °C)
T .= milkinlet temperature delivered to the DXBMC
T .= final milk temperature in the DXBMC (4°C)

Equation 2 indicates the COP calculation for the DXBMC:

Equation 2
COP = E (2)
0
Where

E = measured energy consumption for the DXBMC (kWh)

Formulation and training of the ANNs

The collected data for a year (April 2016-March 2017) was
submitted to MATLAB to develop artificial ANNs and simulate
the energy consumption and COP of the DXBMC. The data was
split 70:15:15, representing training, validation and testing
datasets respectively. Two ANN models were developed, that is,
for the energy consumption and COP respectively. For this
study, an MLFFN trained by the Levenberg Marquardt (LM) was
applied. Several neural networks were created and trained in a
systematic procedure.The basic neural networks are represented
in Figure 2. The basic architectural structure of an ANN network
is separated into three layers, namely the input, hidden and
output layers (Figure 2). The input layer comprised the input
variables, in this study the milk volume (Vmilk), milk temperature
(Tmilk), ambient temperature (Tamb), room temperature
(Troom) and relative humidity (RH), which were considered for
the energy consumption ANN (ANN,), while energy consump-
tion, Vmilk, Tmilk, Tamb, Troom and RH were used for the COP
ANN (ANN_,). Table I shows the details of the developed ANNS.
To evaluate the best combination of input parameters to predict
the energy consumption and the COP of the DXBMC, the
forward stepwise regression selection method was applied. In
this method, all the variables are taken as inputs to the ANN to
determine the best combination of variables for predicting the
energy consumption and the COP respectively. Selection of the
best combination was based on R, RMSE and MAPE. Figure 3
illustrates the neural network architecture for energy
consumption and the COP of a DXBMC.

Simulation, validation and error analysis

Performance of the network was tested using R while the
reliability of the model was determined through the MAPE and
the comparison between the measured and predicted values
was deduced by the RMSE. The following equations show how
R, MAPE and RMSE are calculated:

Figure 2: Experimental layout of the DXBMC a) condensing unit, b) room temperature sensor, ) bulk milk cooler,
d) milk temperature sensor, e) power meter, f) data loggers, g) relative humidity and ambient temperature sensor

(Source: Mhundwa et al., 2018)
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i M, -F
= M,
MAPE = d ()
n
1 n 2
RMSE = fZ(Ml -P) (5)

Where for equations 1, 2 and 3:
M = measured value

P = predicted value

n = number of data

Each predictor for the best performing ANN model was tested
to determine its usefulness in predicting the outputs (energy
consumption and COP). This was done by removing one
predictor at a time and checking the increase and decrease in
the MAPE, RMSE and R.

Ranking of predictors’ importance in respect of output

The connection weight approach was used to rank the model
inputs according to their effect on the output. According to
Oldenand Jackson (2002) and Olden et al., (2004), the connection
weights method determines the relative importance of

Table I: Summary of the developed ANNs

predictors of an ANN model as a function of the NN weights.
This method was selected based on its accuracy as it is derived
from the weights of the ANN (De Ofa & Garrido, 2014).

Measurement and calculation uncertainty

Experimental data and derived calculations are governed by the
accuracy of the instruments used to collect the data (Coleman &
Steele, 2018). In this study, temperature, relative humidity,
ambient temperature and power measurements had tolerances
of £ 0,15°C, = 2,5%, + 0,21°C and 1% respectively (Mhundwa et
al., 2018).

Results and Discussion

The performance of a DXBMC in terms of energy consumption
and COP can be predicted using the ANN model with the input
parameters as shown in Figure 1. The number of neurons
considered for this study was between two and 12 for both the
energy consumption and COP prediction, and the network was
trained several times so as minimise the error between the
predicted values. Table Il shows a correlation matrix for the
variables.

The correlation coefficients presented in Table Il were deduced
from Pearson’s method. It can be observed that most of the
correlation coefficients are low except for Troom and Tamb
(0,960), Troom and RH (-0,829) and Tamb and RH (-0,877). This is
due to the inverse and direct interplay of various weather-
related variables. It should be noted that high correlations
between variables can result in overfitting of a model.

ANN_ description ANN_,, description
Structure Number of neurons

Inputs 1. Milk temperature 1. Milk temperature

2. Milk volume 2. Milk volume

3. Room temperature 3. Room temperature

4. Relative humidity 4. Relative humidity

5. Ambient temperature 5. Ambient temperature

6. Energy consumption

Hidden layer Number of neurons = 2-12
Output Number of neurons = 1 Number of neurons = 1 (COP)

(energy consumption)

Transfer function

Hidden neurons

Tangent sigmoid

Output neurons

Pure linear

Training method

Training goals: minimum
mean square error

Epoch: 1 000 times

Algorithm: Levenberg Marquardt

Database size

180

180

Database partitioning

Training: 70%

Validation: 15%

Test: 15%
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Inputs Input Layer Hidden Layer Output Output Variable
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Figure 3: Neural network architecture for energy consumption and the COP

Table Ii: Correlation matrix for the variables ANN Models

Variables Vmilk | Tamb | RH Tmi | Troom ANN models were developed with all predictors, and Table llI
Vmilk 1 and Table IV illustrate the performance indicators.

Tamb -0,497 1

As indicated in Table Ill, Vmilk constitutes the bulk of the
RH 0,395 | -0,877 1 predictive information for energy consumption. This is due to its
high correlation (0,84) to energy consumption. It can be
observed that adding Tmilk as one of the predictors led to
Troom ~0,472 | 0,960 | -0,829 | 0,445 1 improved performance of the ANN model. The RMSE and MAPE
decreased by 43,56% and 44,15% respectively, while Rincreased
by 9% with 12 neurons. Further addition of Troom to the
predictors reduced the RMSE by a further 13% and MAPE by 7%,
and R increased to 0,9725, from 0,9636. By adding Tamb as one
of the predictors, reduced performance is noticeable, with an

Tmi 0,041 | 0,410 | -0,491 1
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Table Ill: ANN_ models

Model Predictors NN RMSE (kWh) MAPE (%) R
1 Vmilk+Tmilk+Troom+Tamb+RH 6 5,6496 4,1621 0,9726
2 Vmilk+Tmilk+Troom+Tamb 8 6,0752 4,2886 0,9679
3 Vmilk+Tmilk+Troom 8 5,6319 4,1473 0,9725
4 Vmilk+Tmilk 12 6,4736 4,4465 0,9636
5 Vmilk 8 11,4689 7,9619 0,8805

Table IV: ANN_ . models

Model Predictors NN RMSE MAPE (%) R
1 Energy consumption+Vmilk+Tmilk+Troom+Tamb+RH 12 0,00037208 0,00919173 0,9999982
2 Energy consumption+Vmilk+Tmilk+Troom+Tamb 10 0,00057565 0,0076484 0,99999573
3 Energy consumption+Vmilk+Tmilk+Troom 12 0,00031892 0,00953144 0,99999867
4 Energy consumption+Vmilk+Tmilk 8 0,00025759 0,00838367 0,99999916
5 Energy consumption+Vmilk 10 0,04999166 1,65165818 0,96706873
6 Energy consumption 10 0,1812502 6,3688037 0,37563743

increase in RMSE to 6,075 kWh as well as a slight reduction in R
to 0,9679. This was because of the interaction effect between
Tamb and Troom due to location of the DXBMC, as reported in
Mhundwa et al. (2017), as a well as the redundancy caused by
the high correlation coefficient between the two variables as
shown in Table lll. Addition of RH slightly increased R to 0,9726,
and reduced RMSE and MAPE by 7% and 3% respectively. The
performance of ANN model 1 (Table Ill) indicates that all five the
input variables led to better performance in terms of R (0,9726).
The performance of model 1 and model 3 are closely related in
terms of R. However, the RMSE and MAPE are slightly lower for
model 3.

The deduction from the results in Table IV are that using all the
predictors in the model leads to a better performance of the
network. Removing RH as one of the predictors reduces R by
less than 0,00025%, with an increase in RMSE and a decrease in

MAPE. The performance of the network after removal of Tamb is
such that Rand MAPE increase, while RMSE decreases. A network
with energy consumption, Vmilk and Tmilk exhibits the best
performance with the highest R (0,99999916) and the lowest
RMSE (0,00025759). Energy consumption and Vmilk contain
most of the predictive information for the COP of a DXBMC. It
can be deduced that adding Vmilk as one of the predictors led
to improved performance of the ANN model. The RMSE and
MAPE decreased by 72,42% and 74,07% respectively, while R
increased by 157,45%. Further addition of Tmilk to the predictors
reduced the RMSE by a further 99,48% and MAPE by 99,49%,
and R increased from 0,96706873 to 0,99999916. Besides, by
adding Troom as a predictor, reduced performance is noticeable
with an increase in RMSE as well, and a slight reduction in R.
Figure 4 and Figure 5 illustrate the ANN predicted energy
consumption, and the actual energy consumption and COP for
a DXBMC.
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Figure 4: ANN-predicted energy consumption and actual energy con-

sumption for a DXBMC
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Figure 5: ANN-predicted energy consumption and actual COP for a DXBMC
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Figure 7: ANN_, regression plots

Comparison of the sampled experimental data and ANN
prediction results for energy consumption and COP are shown
in Figures 4 and 5. The plots give a visual representation of the
prediction errors. The comparisons show that the ANNs
significantly represented the experimental data; thus, the results
confirm the remarkable capability of the ANN models to predict
energy consumption and COP. Figures 6 and 7 illustrate the
regression plots for the ANN,_ and ANN__,

The four plots in Figure 6 and Figure 7 represent the regression
plots for training, validation, testing and all data for the energy
consumption and COP, respectively. The perfect result of
outputs = targets is represented by the dotted black line, while
the continuous lines are representing the best-adapted linear
regression between outputs and targets (Figure 6 and Figure 7).
The target and output data generated by the artificial neural
network form the corresponding horizontal and the vertical
axes. It can be deduced that the training data have a good fit
with R =0,97989, meaning the output data of the ANN imitated
the desired target data. The results also show that the R values
were greater than 0,95 for the validation and test data. Likewise,
it can be construed from Figure 6 that the training data indicate
a good fit, with R = 0,99999. The validation and test results also
yielded R values above 0,99. The result indicated that the energy
consumption and COP of a DXBMC were successfully predicted
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with high accuracy by a single-layered ANN. Figures 8 and 9
show the validation performance of the developed ANNs.

The creation of the ANNs’structure, used in the modelling of the
energy consumption COP, was performed with 10 epochs and
12 epochs respectively. The best validation agreement at mean
squared error (MSE) = 34,5666 was reached at the 10th epoch,
where R? = 0,9759, while the MSE = 1,851x10° was reached at
the 12th epoch, at R* = 0,9999964 for the COP. Figures 8 and 9
additionally illustrate the practicality of the training results for
the ANNSs. This is seen by the negligible errors between the
training and validation datasets. Of note is that, upon further
training of the ANNSs, these errors did not change meaningfully.
Figures 10 and 11 illustrate the error histogram for ANN, and
ANNCOP‘

The ANN; and ANN_, model errors were deduced from the
difference between the predicted values and the actual values.
In that regard, the positive errors indicate that the predicted
value for the ANN underestimated the actual value, while
negative errors indicate that the predicted value overestimated
the actual value. Analysing Figures 10 and 11 we can observe
that the majority of the errors are located next to the zero-error
line. Thus, the prediction given by the trained ANN is quite
acceptable.
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Relative importance of the predictors

The index of relative importance (R) was deduced for each of
the predictors for determining the relation of the predictor to
the response as illustrated in Figures 12 and 13.

As indicated in Figure 12, Vmilk, Tmilk and Troom varied in the
positive direction, whereas RH and Tamb varied in the negative
direction at almost the same magnitude. This implies that Vmilk,
Tmilk and Troom had a positive relationship with energy
consumption. Accordingly, Vmilk had the most significant
contribution to energy consumption (R= 1,902) followed by
Troom (R, = 1,378). The results depict that the energy

consumption of the DXBMC was more sensitive to the change in
Vmilk. According to Figure 13, energy consumption is the most
crucial variable in predicting COP of a DXBMC (R, = -5,817),
followed by Vmilk (R, = 3,350) and Tmilk (R, = 1,284). Troom,
Tamb and RH had the least contribution to the COP of the
system. The COP of the DXBMC was the more sensitive to the
change in the energy consumption followed by Vmilk and Tmilk.
Furthermore, it should be mentioned that the COP was least
sensitive to Troom, Tamb and RH. The findings from this study
suggest that Vmilk and Tmilk are significant predictors for the
performance of a DXBMC. As such, optimising Vmilk and Tmilk
will contribute to the efficient operation of the DXBMC. Mostly,
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Figure 12: Relative Importance of predictors for ANN,
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Figure 13: Relative Importance of predictors for ANN_,

raw milk leaves the cow at a temperature of 35-37 °C and rapid
cooling to a temperature of 4 °C renders it safe (Lewis and
Heppell, 2000; Holm et al., 2004; Upton et al,, 2010). This suggests
that in a direct milking-to-refrigeration system, milk is delivered
to the DXBMC at approximately 32 °C (Mhundwa et al,, 2018);
hence energy consumption will also increase. On the other
hand, previous studies (Peebbles et al, 1993; O’Keeffe, 2007;
Murphy et al, 2013; Mhundwa et al., 2016) revealed that milk
pre-cooling using groundwater as the coolant can reduce the
temperature of the milk to an average of 19,9 °C. These studies
showed that there was a 50,3% decrease in energy consumption,
and the use of a raw milk precooler enhanced the efficiency of
the DXBMC, which led to a significant reduction in energy
consumption. Intuitively, Tmilk can be effectively controlled on
a dairy farm. However, herd size and selection of cattle breeds,
farm size and quality of feed may in turn have an impact on the
volume of milk (Vmilk) produced (Dillon et al., 2003; Franzoi et
al.,, 2020).

Conclusion

The performance of an on-farm DXBMC was analysed in a bid to
predict energy consumption and coefficient of performance
through models that were based on ANNs trained with a
database obtained from data that was measured on an existing
dairy farm. The findings from the study are summarised as
follows:

1. The result indicated that the energy consumption and COP
of a DXBMC could be predicted by a single-layered neural
network

2. The accuracy given by the ANN models are acceptable and
can be used for on-farm DXBMCs to monitor and optimise
the milk cooling operations.

3. The index of relative importance of the predictors show
that Vmilk and Tmilk are the most essential variables in
predicting both energy consumption and COP of a DXBMC.

4. The energy consumption is mostly sensitive to the Vmilk,
whereas the COP is mostly sensitive to energy consumption.
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